
Learning a Dual-Language Vector Space for
Domain-Specific Cross-Lingual Question Retrieval

Guibin Chen1, Chunyang Chen1, Zhenchang Xing1, and Bowen Xu2

1School of Computer Science and Engineering, Nanyang Technological University, Singapore
2College of Computer Science and Technology, Zhejiang University, China

{gbchen, chen0966, zcxing}@ntu.edu.sg, max_xbw@zju.edu.cn

ABSTRACT
The lingual barrier limits the ability of millions of non-
English speaking developers to make effective use of the
tremendous knowledge in Stack Overflow, which is archived
in English. For cross-lingual question retrieval, one may
use translation-based methods that first translate the non-
English queries into English and then perform monolingual
question retrieval in English. However, translation-based
methods suffer from semantic deviation due to inappropri-
ate translation, especially for domain-specific terms, and lex-
ical gap between queries and questions that share few words
in common. To overcome the above issues, we propose a
novel cross-lingual question retrieval based on word embed-
dings and convolutional neural network (CNN) which are the
state-of-the-art deep learning techniques to capture word-
and sentence-level semantics. The CNN model is trained
with large amounts of examples from Stack Overflow dupli-
cate questions and their corresponding translation by ma-
chine, which guides the CNN to learn to capture informa-
tive word and sentence features to recognize and quantify
semantic similarity in the presence of semantic deviations
and lexical gaps. A uniqueness of our approach is that the
trained CNN can map documents in two languages (e.g.,
Chinese queries and English questions) in a dual-language
vector space, and thus reduce the cross-lingual question re-
trieval problem to a simple k-nearest neighbors search prob-
lem in the dual-language vector space, where no query or
question translation is required. Our evaluation shows that
our approach significantly outperforms the translation-based
method, and can be extended to dual-language documents
retrieval from different sources.

CCS Concepts
•Software and its engineering → Software libraries
and repositories; •Information systems → Multilin-
gual and cross-lingual retrieval;

Keywords
Cross-lingual question retrieval, Word embeddings, Convo-
lutional Neural Network, Dual-Language Vector Space

1. INTRODUCTION
Question Answering (Q&A) sites have become an impor-

tant service for knowledge sharing and acquisition. In the
software engineering domain, Stack Overflow is the most
prominent Q&A site. Over the past few years, it has ac-
cumulated a large amount of user-generated content, which
makes it a valuable repository of software engineering knowl-
edge. The content in the Q&A sites is organized as questions
and corresponding answers. One key task for reusing con-
tent in such a site is finding questions that are similar to user
queries, as questions are the keys to accessing the knowledge
in the site.

Many techniques [24, 28, 34] support monolingual question
retrieval. That is, to retrieve English questions1 in Stack
Overflow, user queries must also be in English. However,
many developers are from non-English speaking countries,
such as China. According to Stack Overflow user and visit
statistics, the U.S has 80 times more registered users than
the China on Stack Overflow,2 but the monthly visits from
the U.S is only about 22 times more than that from the
China3. This indicates that although not many Chinese de-
velopers participate in Q&As, much more of them do visit
Stack Overflow to reuse its content. The English skills of
non-English speaking developers could be good enough to
read posts in English, but are usually not sufficient to ex-
press their questions in English queries. This limits the abil-
ity of non-English speaking developers to make effective use
of Stack Overflow content.

We thus need cross-lingual question retrieval (CLQR) tech-
nique that overcomes the language barrier, and allows non-
English speaking developers to issue queries in their native
language (e.g., Chinese) to retrieve questions in English.
One possible way for cross-lingual question retrieval to work
is to first translate the queries from the native language into
English, and then to use monolingual question retrieval to
retrieve questions in English. This approach assumes that
query translation can preserve query semantics, and ques-
tion retrieval techniques can handle lexical gaps between

1Several non-English Stack Overflow sites have been
launched. However, they are much less popular than En-
glish Stack Overflow.
2http://nlpx.net/archives/172
3http://stackoverflow.com/research/
developer-survey-2016#overview
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queries and questions. We argue that these assumptions are
too simplistic.

Semantic deviation is likely to be introduced in query
translation, especially for domain-specific technical terms.
For example, “审查” has several common translations like
“examine”, “censor”, or “investigate” by Google Translate.
However, when we consider it in a specific sentence within
software-engineering context, it would be better translated
into some domain-specific terms in English. For example,
for the two Chinese queries, “代码审审审查查查工具” and “网页元
素审审审查查查”, the appropriate domain-specific translations would
be“code review tool”and“web element inspection”. That
is, “审查” should be translated as “review” and “inspections”
in these two queries, while Google Translate cannot make
the appropriate domain-specific translation. Although the
English words “examine”, “review” and “inspection” are syn-
onyms, an inappropriate translation will introduce deviation
from the original meanings of the queries and affect the sub-
sequent retrieval step.

In addition to term-level semantic deviation across lan-
guages, sentence-level lexical gaps could further affect the
performance of the retrieval techniques. Lexical gap means
that relevant queries and questions may not share many
words in common. As there are many ways to ask the same
question, a user might not be able to find the answer if they
are asking it a different way. Assume developers want to
know how to read a text file. Some may describe their needs
using the query “读取文本文件” (“read text file”), while oth-
ers may use queries like “ASCII文件到字符串” (“ASCII file
to string”), or “访问文件字符串内容” (“access string content
in file”). Developers may also express errors of their pro-
gram as queries like “不能加载全部字符串” (“cannot load
all strings”). Stack Overflow already has good answers to
the question like “read a plain text file”. Although all the
queries and the question share very similar meanings, except
the query “read text file”, the other queries and the question
share few words in common. Such sentence-level lexical gap
has become a major barricade for traditional information re-
trieval (IR) models (e.g., BM25 [28], LDA [2]) to determine
query-question similarity [46]. For cross-lingual retrieval,
the issue would be more prevalent, due to different norms
and expressions across languages and semantic deviation in
query translation.

In this paper, we tackle the cross-lingual question retrieval
problem using deep learning techniques. To overcome the
above issues on semantic deviation and lexical gap, we adopt
word embeddings and Convolutional Neural Networks (CNN)
to recognize and quantify word- and sentence-level semantic
similarity across lingual barrier and lexical gap. We focus
on Chinese-to-English question retrieval, because Chinese
is distant from English, making it a more challenging task.
The key innovation of our approach is that we train the CNN
using sufficient examples of sentence pairs that are semanti-
cally equivalent but have semantic deviations due to inaccu-
rate translation and lexical gaps. These training examples
are collected from the large amount of duplicate questions
(0.3 million) in Stack Overflow and the corresponding Chi-
nese translations of these questions translated by machine
(Google Translate). We design effective loss functions to
guide the CNN to learn to capture the most informative
word and sentence features to determine semantic similarity
in the presence of semantic deviations and lexical gaps.

After training, our CNN can map both English and Chi-
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Figure 1: Continuous Skip-gram model

nese documents onto a dual-language vector space in which
terms and documents from both languages are represented
as language-independent vectors. Semantically close terms
and documents from both languages are likewise close in
the dual-language vector space. In this work, the English
documents are a knowledge base of English questions, and
the Chinese documents are Chinese queries. In contrast to
query translation followed by monolingual question retrieval,
our approach directly quantifies semantic similarity between
Chinese queries and English questions in terms of their dis-
tance in the dual-language vector space in which no query or
question translation is required. Given a query, cross-lingual
question retrieval is then transfered to a simple k-nearest
neighbors search in the dual-language vector space.

We compare our deep-learning based approach with the
baseline GoogleTranslate+Lucene method. The results show
that our approach obtains slightly better results than the
baseline method in terms of the rank of the first relevant
question retrieved. However, our approach significantly out-
performs the baseline method in retrieving more relevant
questions, especially the questions that exhibit a lexical gap
with the input queries, which the baseline method usually
fails to retrieve. Furthermore, our approach is more robust
to the semantic deviations across languages. We also ap-
ply our CNN to a completely different data source (English
version and Chinese version of a Python tutorial website),
which demonstrate the generality of our approach.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces background related to word embeddings
and CNN. Section 3 presents the technical details of our ap-
proach. Section 4 reports the evaluation of our approach.
Section 5 reviews the related work. Section 6 summarizes
our work and outlines the future plans.

2. BACKGROUND
This section introduces the basic concepts of the two key

techniques, i.e., word embeddings and convolutional neural
network, that our approach relies on.

2.1 Word Embeddings
Word embeddings are dense low-dimensional vector rep-

resentations of words that are build on the assumption that
words with similar meanings tend to be present in similar
context. Studies [1, 7, 19, 30] show that word embeddings
are able to capture rich semantic and syntactic properties of
words, compared with one-hot word representation [32].

Word embeddings are typically induced using neural lan-
guage model, which uses neural networks as the underly-
ing predictive model. Figure 1 shows the continuous Skip-
gram model [19], one of the two popular word-to-vector
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(word2vec) neural language models proposed by Mikolov et
al. The goal of the continuous Skip-gram model is to learn
the word embeddings of a center word (i.e., wi) that is good
at predicting the surrounding words in a context window
of 2t + 1 words (t = 2 in this example). More specifically,
the objective function of the Skip-gram model is to maxi-
mize the sum of log probabilities of the surrounding context
words conditioned on the center word:

n∑
i=1

∑
−t≤j≤t,j 6=0

log p (wi+j |wi)

where wi denotes the center word in a context window of
length 2t + 1 and wi+j denotes the context word surround-
ing wi within the context window. n denotes the length of
the word sequence. The log p (wi+j |wi) is the conditional
probability defined using the softmax function:

p (wi+j |wi) =
exp(v′Twi+j

vwi)∑
w∈W exp(v′Tw vwi)

where vw and v′w are respectively the input and output vec-
tors of a word w in the underlying a neural network, and W
is the vocabulary of all words. Intuitively, p (wi+j |wi) esti-
mates the normalized probability of a word wi+j appearing
in the context of a center word wi over all words in the vo-
cabulary. This probability can be efficiently estimated by
the negative sampling method [20].

The continuous Skip-gram model does not care about the
input language as long as the sentences can be properly to-
kenized into a sequence of words. Given word sequences,
the model maps words onto a low-dimensional, real-valued
vector space. Word vectors are essentially feature extrac-
tors that encode semantic and syntactic features of words
in their dimensions. In this vector space, semantically close
words are likewise close in Euclidean distance.

2.2 Convolutional Neural Network
A convolutional neural network (CNN) utilizes layers with

convolution filters that are applied to local features of an
object (e.g., an image or a sentence) to produce a feature
vector of the object [17]. Some recent works have success-
fully applied CNNs to model sentence- and document-level
semantics for NLP tasks such as sentence classification [44],

and duplicate question detection [3]. Figure 2 shows the
model architecture of a simple CNN for NLP tasks. To ap-
ply the CNN to text, words comprising a sentence need to
be converted into vector representations to be used as input
to the CNN. A commonly used word vector representation
is word embeddings as mentioned in the previous section.
Let xi ∈ Rk be the k-dimensional word vector correspond-
ing to the i-th word in the sentence. A sentence of length n
is represented as

x1:n = x1 ⊕ x2 ⊕ ...⊕ xn

where ⊕ is the vector concatenation operator. We can treat
the sentence vector as an “image”, and perform convolution
on it via linear filters. In text applications, because each
word is represented as a k-dimensional vector, it is reason-
able to use filters with widths equal to the dimensionality
of the word vectors (i.e., k). Thus we simply vary the win-
dow size (or height) of the filter, i.e., the number of adjacent
words considered jointly. Let xi:i+h−1 refer to the concate-
nation vector of h adjacent words xi, xi+1, ..., xi+h−1. A
convolution operation involves a filter w ∈ Rhk (a vector of
h× k dimensions) and a bias term b ∈ Rh, which is applied
to h words to produce a new value oi ∈ R:

oi = wT · xi:i+h−1 + b

where i = 1...n − h + 1, and · is the dot product between
the filter vector and the word vector. This filter is applied
repeatedly to each possible window of h words in the sen-
tence (i.e., x1:h, x2:h+1, ..., xn−h+1:n) to produce an output
sequence o ∈ Rn−h+1, i.e., o = [o1, o2, ..., on−h+1]. We apply
a non-linear activation function f to each oi to produce a
feature map c ∈ Rn−h+1 where ci = f(oi). A commonly
used non-linear activation function is ReLu:

ReLu(oi) = max(0, oi)

One may also specify multiple kinds of filters with different
window sizes, or use multiple filters for the same window size
to learn complementary features from the same word win-
dows. In Figure 2, we illustrate N filters for the window size
of h = 3. The dimensionality of the feature map generated
by each filter will vary as a function of the sentence length
and the filter’s window size. Thus, a pooling function is then
applied to each feature map to induce a fixed-length vector.
A common strategy is 1-max pooling, which extracts a scalar
(i.e., a feature vector of length 1) with the maximum value
for each filter. Together, the outputs from each filter can be
concatenated into a feature vector for one layer of the CNN.
This feature vector can be fed into the next layer of the
CNN for further convolution, or be used as the output vec-
tor for different NLP tasks (e.g, sentence classification [44],
duplication question detection [3]).

3. DUAL-CHANNEL CNN FOR CLQR
We now describe our dual-channel CNN that is designed

for cross-lingual question retrieval (CLQR).

3.1 Approach Overview
This work focuses on Chinese-to-English question retrieval,

because Chinese is distant from English. Figure 3 presents
the main steps of our approach. First, we collect questions
from Stack Overflow and two Chinese Q&A sites (Segment-
Fault and V2EX) as our dataset. To mitigate the lack of
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Chinese questions for learning Chinese word embeddings,
we augment the Chinese question dataset with the Chi-
nese translations of Stack Overflow questions using Google
Translate. We learn monolingual word embeddings from a
large number of English and Chinese questions, respectively.
These pre-trained English and Chinese word embeddings are
used in two ways: first as word vector representations of En-
glish and Chinese sentences for training the CNN, and sec-
ond, as word vector representations of Chinese queries and

English questions for cross-lingual retrieval.
Word embeddings capture word-level semantics for each

language. Next, we use CNNs to quantify sentence-level se-
mantic similarity across language. The application of CNNs
includes a training phase and a query phase. In the train-
ing phase, we generate a set of dual-language sentence pairs,
i.e., one sentence in English and the other in Chinese, from
Stack Overflow duplicate questions and their corresponding
Chinese translations (also obtained by Google Translate).
A dual-channel CNN is designed, one channel for each lan-
guage respectively, and trained by the dual-language sen-
tence pairs. In the query phase, the respective CNN chan-
nel can map Chinese queries and a knowledge base of En-
glish questions onto the dual-language vector space in which
terms and sentences from both languages are represented as
language-independent vectors. In this vector space, seman-
tically close terms and sentences from both languages are
likewise close (see examples in Figure 7a). Given a query
in Chinese, cross-language question retrieval is reduced to
find k-nearest English questions close to the query in the
dual-language vector space.

It is important to note that we use Google Translate to
obtain Chinese translations of Stack Overflow questions for
learning Chinese word embeddings and training the dual-
channel CNN. However, cross-language question retrieval is
supported by the dual-channel CNN in which no query or
question translation is required.

3.2 Learning Monolingual Word Embeddings
Words are discrete symbols and cannot be fed directly to

a neural network. We need to map each word to a real-
valued vector. In this work, we use word embeddings as
input word vector representations, because of the ability of
word embeddings to capture latent semantic and syntactic
features of words in their dimensions [19, 20].

To learn word embeddings of a language, we need large
amounts of texts in that language. For software engineering
question retrieval, texts should be domain-specific and cover
the vocabulary of the questions people may ask. There-
fore, we collect question titles from Stack Overflow as a cor-
pus of English software engineering texts for learning En-
glish word embeddings. For learning Chinese word embed-
dings, we collect question titles from two Chinese Q&A sites
(SegmentFault and V2EX) as a corpus of Chinese software
engineering texts. Because Chinese Q&A sites have many
fewer questions than Stack Overflow, we augment Chinese
software engineering texts with the Chinese translations of
Stack Overflow question titles. Due to the sheer amount
of texts needed, human translation is impractical. There-
fore, we use machine translation (Google Translate) to ob-
tain Chinese translations of Stack Overflow question titles.
Machine translation also “intentionally” injects some seman-
tic deviations in between English and Chinese texts so that
the trained CNN can be more robust to semantic deviations
between Chinese queries and English questions.

Each collected question title is considered as a sentence.
We preprocess English sentences by standard English text
preprocessing steps like tokenization, lowercasing, etc. For
Chinese sentences, we tokenize them into Chinese words us-
ing SnowNLP tool4, and lowercase any English words (e.g.,
tool names) in the Chinese sentences. We use the contin-
uous skip-gram model [20] (the Python implementation in

4https://github.com/isnowfy/snownlp
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Gensim [26]) to learn monolingual word embeddings from
the English and Chinese software engineering text, respec-
tively. The output is a dictionary of English words and their
embeddings and a dictionary of Chinese words and their em-
beddings, which will be used to represent English questions
and Chinese queries respectively.

3.3 Training the Dual-Channel CNN
This section describes the architecture of our CNN, and

how we generate training documents and train the CNN
with these documents.

3.3.1 The Architecture of the Proposed CNN
For cross-lingual retrieval, we design a dual-channel CNN,

each channel can map sentences in one language into a dual-
language vector space in which sentence-level semantic simi-
larity can be quantified. Both channels have the same archi-
tecture as shown in Figure 4. The difference is only that one
takes English sentences as input while the other takes Chi-
nese sentences as input. An input sentence is first converted
into a sentence vector by looking up the word-embeddings
dictionary and concatenating the word embeddings of the
words comprising the sentence. The sentence vector is then
fed into the CNN as input.

Our CNN consists of two layers, each of which follows
the architecture depicted in Figure 2. The first layer of
the CNN uses filters with three different window sizes (i.e.,
h = 1, 3, 5). That is, we try to extract features of 1-gram,
3-grams and 5-grams in the input sentence. For each win-
dow size, we use N (e.g., 32) filters to learn complementary
features from the same word windows. After convolution,
ReLu activation and 1-max pooling, the first layer outputs
a N -dimensional feature vector for each window size. The
three feature vectors output by the first layer are intended to
capture the most informative 1-gram, 3-grams and 5-grams
in the input sentence, and are used as the input vectors to
the second layer. The goal of the second layer is to extract
the interactive information of these n-grams, for example,
syntactic or semantic dependence of different parts of a sen-
tence. The second layer uses filters with window size h = 3.
For each feature vector output by the first layer, the second
layer uses M (e.g., 32) filters. After convolution, ReLu ac-
tivation and 1-max pooling, the second layer outputs three
M -dimensional feature vectors.

Finally, the output layer (also known as fully connected
layer) concatenates the feature vectors output by the sec-
ond layer, and performs a linear transformation to map
the 3M -dimensional feature vector into a H-dimensional
vector in the dual-language vector space. Note that sen-
tences from both languages are represented as language-
independent vectors in the dual-language vector space, in
which semantically close sentences are likewise close.

3.3.2 Generating Dual-language Sentence Pairs
To train the proposed dual-channel CNN, we need a set

of dual-language sentence pairs, each of which is a pair of
semantically equivalent or different sentences, one in En-
glish and the other in Chinese. In statistical machine trans-
lation research, such dual-language documents are usually
obtained from human translated documents, for example
United Nation documents for different languages [11, 36].
In the software engineering domain, such human-translated
dual-language documents rarely exist, except some textbooks

Link to duplicated 
questions

Figure 5: An example of duplicate question

or user manual of software tools. However, for the task of
question retrieval, textbook and user manual contents are
not sufficient to cover the ways people ask questions and
the vocabulary of questions people ask. Furthermore, the
key design goal of our approach is to be able to quantify se-
mantic similarity across query-question lingual barrier and
lexical gap. To that end, the training sentence pairs must in-
clude sufficient examples of semantically equivalent Chinese-
English sentence pairs with semantic deviation and lexical
gap. Textbook and user manual contents cannot satisfy this
need.

We exploit large amounts of Stack Overflow duplicate
questions and machine translation to generate dual-language
sentence pairs for training our CNN. On Stack Overflow,
large amounts of duplicate questions are kept (except ex-
act or nearly exact duplicates), because Stack Overflow ac-
knowledges that users could formulate the same question in
different ways5 (see Figure 5 for an example). These du-
plicate questions are semantically equivalent as they can be
answered by the same answer, but often exhibit lexical gap.
We collect question titles of Stack Overflow duplicate ques-
tions as English sentences, and translate them into Chinese
counterparts. As training of a CNN requires large amounts
of dual-language sentence pairs, human translation is im-
practical. Therefore, we use Google Translate to generate
the Chinese translations of Stack Overflow question titles.
Although machine translation will likely introduce semantic
deviation from the original English questions, there are usu-
ally correct translations in a group of duplicate questions.
Furthermore, non-English speaking developers are likely to
use similar machine translation services, and thus introduce
similar translation deviations. Third, certain level of trans-
lation deviations in the training sentence pairs will make the
CNN more robust to different ways to express semantically
similar meanings across languages.

Let EGi be the ith group of English duplicate questions,
and CGi be the corresponding group of Chinese duplicate
questions translated by Google Translate. Denote esij as the
jth English question in the ith English duplicate group, and
csij as the jth Chinese question in the ith Chinese duplicate
group. An English question and its corresponding Chinese
translation are indexed by the same ij in the corresponding
English and Chinese groups. As illustrated in Figure 6, for
a pair of EGi and CGi, we generate two sets of semantically
equivalent sentence pairs whose semantic similarity is set to
1 (i.e., sim = 1). The first set includes the English question
title esij ∈ EGi and its corresponding Chinese translation
csij ∈ CGi for all questions in the EGi and CGi, such
as es11 ∈ EG1 and cs11 ∈ CG1, es12 ∈ EG1 and cs12 ∈
5http://stackoverflow.com/help/duplicates
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Figure 6: Generating Dual-Language Sentence Pairs

CG1, etc. The number of entries in this set is the same
as the number of duplicate questions in the group. The
second set include the English question title esij ∈ EGi and
the Chinese translation of a different English question title
csik ∈ CGi (j 6= k), such as es13 ∈ EG1 and cs11 ∈ CG1,
es12 ∈ EG1, cs11 ∈ CG1, etc. The entries in the second set
are randomly selected within EGi and CGi, and the number
of the entries in the second set is the same as that of the
first set. Both semantically equivalent sets would exhibit
semantic deviations caused by machine translation and the
second set would exhibit lexical gap between semantically
equivalent questions.

We randomly select a set of semantically different sentence
pairs, each of which consists of an English question title
from one group of English duplication questions EGk and
a Chinese translation from a non-corresponding group CGg

(k 6= g), such as es11 ∈ EG1 and cs26 ∈ CG2. The semantic
similarity of these semantically different pairs is set to 0.
The number of semantically different sentence pairs across
groups is the sum of the two sets of semantically equivalent
pairs. These semantically different sentence pairs contrast
with the semantically equivalent pairs for training the CNN.

3.3.3 Loss Functions
To train the CNN, we feed the dual-language question

pairs to the CNN, giving the English question to English
CNN channel and the Chinese question to Chinese CNN
channel. Let the kth dual-language question pair be a tuple
〈eskegkeid ∈ EGkeg , cskcgkcid ∈ CGkcg , simk〉, where keg
and kcg are the group index of English duplicate questions
and Chinese duplicate questions respectively, and keid and
kcid are the index of the English question and the Chinese
question in the respective English- and Chinese-questions

group. If keg and kcg are the same (i.e., eskegkeid and
cskcgkcid are from the corresponding English-Chinese groups),
simk is 1, otherwise simk=0. The respective CNN channel
maps the English or Chinese question as a vector in the
dual-language vector space. We denote the two vectors as
evk and cvk.

We use cosine similarity, i.e., cos(evk, cvk), to measure the
distance between the two vectors. Correspondingly, mean
square error is used as the loss function to quantify the
agreement between the computed similarity and the expected
similarity:

Lcos =
1

Nds

∑
1≤k≤Nds

(simk − cos(evk, cvk))2

where Nds is the number of dual-language question pairs for
training. Mean square error of cosine similarity (i.e., cosine
loss) will guide the CNN to map semantically equivalent
questions around the same angle in the vector space (thus
cosine similarity would be close to 1), but map semanti-
cally different questions at 90 degrees (thus cosine similarity
would be close to 0).

Meanwhile, a SVM is introduced for the two output vec-
tors evk and cvk respectively. In our case, there are hun-
dreds of thousands of duplicate-questions groups. Such a
large-class classification problem will make the SVM training
time-consuming. Since the SVM here is used as an auxiliary
driving force to guide the CNN to capture appropriate sen-
tence features for separating semantically different groups,
performing a sampled classification is sufficient, similar to
the negative sampling method used in training word embed-
dings [20]. The input of the sampling SVM is the output
vector from the CNN, evk (or cvk). A linear layer is used
to calculate the scores of the vector evk (or cvk) in different
duplicate-questions group j:

sj = uT
j evk + bj

where uj and bj are the weight and bias parameter of the
SVM. Then, the sampling multiclass SVM loss is defined as:

LSV M (evk) =
∑

j∈corrupt(g)

max(0, sj − skeg + 1)

where the corrupt(g) is a set of indexes of a small number
(e.g. 10) of sampled corrupted duplicate-questions groups.
A corrupted group means the group other than the ground-
truth group for the vector evk (or cvk), i.e., keg (or kcg).
The Lsvm(cvk) can be defined in the same way. The overall
loss function for the sampling SVM is:

LSV M =
1

Nds

∑
1≤k≤Nds

(LSV M (evk) + LSV M (cvk))
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Figure 7: Words or sentences in the dual-language
space

As we only sample a small number of corrupted groups
for computing SVM loss, the computation time is dramat-
ically reduced. Although the sampling SVM provides only
an approximation to the full SVM, our experiments show
that when it cooperates with cosine loss function, the sam-
pling SVM guides the CNN to cluster semantically equiva-
lent sentences within small Euclidean distance, but separates
semantically different sentences by large Euclidean distance.

3.3.4 Training Process
Intuitively, the training process makes the CNN learn to

capture the most informative features of English and Chi-
nese sentences for quantifying semantic similarity across lin-
gual barrier and lexical gap. Formally, the training objective
is to minimize the loss function overall the entire set D of
dual-language sentence pairs:

arg min
W,b

Lcos + LSV M + R(W )

where R(W ) is l2 norm constraint, which is used to avoid
overfitting problem. The parameters (W, b) to be estimated
include: the filters and bias terms in the first and second
layer of the CNN, the linear transformation matrix of the
output layer, and the parameters of the SVM classifiers. The
Adam update algorithm [15] is used instead of stochastic
gradient decent (SGD) for a faster convergence.

3.4 Cross-Lingual Question Retrieval
After training the CNN, we learn the parameters of each

layer of the CNN. It can then be used to map questions
and queries in either language onto a dual-language vector
space. Figure 7b shows the visualization of several seman-

tically similar Chinese queries and English questions that
uses the t-SNE dimensional reduction technique [37]. Fig-
ure 7a gives some most frequently used English words in
Stack Overflow posts and their corresponding Chinese trans-
lations in the two-dimensional t-SNE visualization [37]. We
can see that semantically close terms and sentences from
both languages are close in the dual-language vector space.
This shows the potential usefulness of our CNN for cross-
lingual information retrieval.

For Chinese-to-English question retrieval, we can collect
a knowledge base of English questions (different from those
used to train the CNN). These English questions will be con-
verted into word vector representations using English word
embeddings, and then question vectors will be mapped onto
the dual-language vector space using the English CNN chan-
nel. Users can query these English questions using queries
in Chinese. Chinese queries do not need to be translated.
Instead, they are converted to word vector representations
using Chinese word embeddings, and then query vectors will
be mapped onto the same dual-language vector space using
the Chinese CNN channel. Most relevant English questions
can be retrieved by finding the k-nearest questions close to
the query in the vector space.

Although this work focuses on Chinese-to-English ques-
tion retrieval, our CNN can also support English-to-English,
Chinese-to-Chinese, English-to-Chinese retrieval. That is,
queries in either language can retrieve questions in either
language. Depending on the language of queries and ques-
tions, the respective CNN channel can be used to map queries
and questions onto the same vector space, then question re-
trieval can be done by finding k-nearest neighbors.

4. EVALUATION
We perform a set of experiments to answer the following

questions:

• How do the hyperparameters of the CNN affect the
performance of the CNN?

• Can our approach outperform the query-translation-
then-monolingual-question-retrieval method and in what
cases?

• Can the CNN trained with Stack Overflow data be
used to quantify semantic similarity of English-Chinese
sentences from a different data source?

4.1 Dataset
The main data source of our study is Stack Overflow

data dump of January 20166. We collect 0.3 million dupli-
cate questions from the data dump, which form 0.1 million
duplicate-questions groups. We also crawl 0.1 million Chi-
nese questions from two Chinese Q&A sites (SegmentFault
and V2EX). We augment the Chinese questions with the
Chinese translations of 0.2 million randomly selected Stack
Overflow questions. In this work, we use only question titles,
each of which is treated as a sentence. The corpus of English
sentences and Chinese sentences is used to learn monolingual
word embeddings to represent English and Chinese words,
respectively. We randomly divide the duplicate-questions
groups into three subsets, i.e., 80% (training), 10% (valida-
tion) and 10% (test). The 80% subset is used to generate

6https://archive.org/download/stackexchange
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Figure 8: Impact of word-embedding dimensionality

dual-language sentence pairs for training the CNN. The first
10% subset is used to tune the CNN hyperparameters dur-
ing training. The second 10% subset is used to compare our
approach with the baseline method.

4.2 CNN Hyperparameter Optimization
Our CNN has two hyperparameters: the dimensionalities

of the word embeddings and the output feature vectors of
each layer. We conduct experiments to investigate the in-
fluence of different parameter choices.

4.2.1 The Dimensionality of Word Embeddings
In this experiment, we set the dimensionality of word em-

beddings at 25, 50, 100, 200 and 400. We use the setting
(64, 64, 32) for the dimensionality of output feature vectors
of the three layers in our CNN (see Section 4.2.2).

Figure 8a plots the convergence of the loss function by
the number of CNN training iterations for different dimen-
sionalities. The loss function converges at different speed
for different dimensionalities. The larger the dimensional-
ity is, the fewer iterations the loss function takes to con-
verge. However, this does not mean that loss function takes
less time to converge for larger dimensionality, because for
a larger dimensionality it will need more computation time
per iteration.

Figure 8b plots the validation accuracy by the number
of epochs for different dimensionalities. One epoch consists
of one full training cycle on the training set. Given a pair
of English-Chinese sentences in the validation data, if the
cosine similarity of the two sentences in the dual-language
vector space is above 0.5, we consider the two sentences as
semantically equivalent, otherwise as semantically different.
Validation accuracy is computed by the number of accu-
rate predictions of semantically equivalent (or different) sen-
tence pairs in the validation set. As the validation dataset
has an equal number of semantically equivalent (or differ-
ent) sentence pairs, the accuracy of a random prediction
would be around 0.5. Figure 8b shows that the validation
accuracy increases and converges at very similar rate for
different dimensionalities, and word-embedding dimension-
ality does not have big impact on the accuracy of semantic-
equivalence/difference prediction.

4.2.2 The Dimensionality of Feature Vectors
The dimensionality of output feature vectors of CNN lay-

ers affects the complexity of the CNN. In our CNN, the
dimensionality of feature vectors in the first layer is propor-
tional to the number of filters (N) used for each window size.
The dimensionality of feature vectors in the second layer is
proportional to the number of filters (M) used for each input
vector. The dimensionality of feature vector in the output
layer is H. The search space of these CNN parameters is ex-
tremely large. We experiment with three settings (N,M,H):
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Figure 9: Impact of the CNN complexity

(32,32,16), (64,64,32), (128,128,64), with increasing com-
plexity. In this experiment, we use 200-dimensional word
embeddings. Figure 9a and Figure 9b plot the loss function
convergence and validation accuracy for different CNN com-
plexities. We can see that the more complex the CNN is,
the fewer iterations the loss function takes to converge, and
the slightly higher the validation accuracy is.

4.3 Comparison of CLQR Performance
In this section, the comparison experiments with the base-

line methods are shown and discussed.

4.3.1 Experiment Setup
Ground truth: For the 10% duplicate-question groups

used as test data, we compile all English questions as the
knowledge base. Let EGi be a group of English duplicate
questions in the test data, and CGi be the corresponding
group of Chinese duplicate questions (see Section 3.3.2). We
use each Chinese question csij ∈ CGi as a query to retrieve
English questions esik ∈ EGi (k 6= j). That is, all English
questions in EGi, except the one corresponding to the query
Chinese question csij , are used as ground truth to evaluate
the performance of question retrieval.

Baseline methods: For the baseline method, we use
Google Translate to translate the Chinese query into an En-
glish query, and then use Lucene to retrieve English ques-
tions for the translated English query. In addition to Google-
Translate+Lucene, we also directly use the English question
corresponding to the query Chinese question as the English
query for Lucene search. This second method can be con-
sidered as the “perfect” translation of the Chinese query for
monolingual question retrieval.

Our approach: Based on the CNN hyperparameters ex-
periments, we use 200-dimensional word embeddings and the
output feature vectors setting (128,128,64) in this compar-
ative study. To gain insight into the impact of our loss func-
tions on the CNN performance, we train two CNNs, one
with only cosine loss (referred to as CNN (only cos)) and
the other with both cosine loss and SVM loss (referred to as
CNN (cos+SVM)).

Metrics: Given a Chinese query, let RE be the list of
retrieved questions for the query, and let GT be the set
of ground truth questions for the query. We evaluate the
question-retrieval performance of our approach and the base-
line methods using three metrics: Precision@k (Pr@k), Mean
Average Precision (MAP), and Mean Reciprocal Rank (MRR).
Precision@k refers to the fraction of retrieved questions that
are relevant in the top-k retrieval results, i.e., |RE

⋂
GT |/k.

Let the rank position of all relevant questions in the RE
for a query be r1, r2, . . . , rz. We can compute Pr@k for
k = r1, r2, . . . , rz. The average precision for this query is
defined as the mean of the computed Pr@k. Mean Average
Precision (MAP) is the mean of the average precisions over

751



all the queries. Let k be the rank position of the first rel-
evant question in the RE for a query, then the reciprocal
rank (RR) is defined as 1

K
. Mean Reciprocal Rank (MRR)

is the mean of the RRs over all queries.

4.3.2 Quantitative Results
Table 1 shows the performance results. We can see that:

• The performance of GoogleTranslate+Lucene is worse
than that of Lucene-only (i.e., simulating“perfect”trans-
lation). This suggests that semantic deviations in query
translation can degrade the performance of subsequent
monolingual retrieval step.

• In contrast, both our CNN settings outperform Google-
Translate+Lucene baseline, and our CNNs achieve al-
most the same or better performance than Lucene-only
baseline. This suggests that directly quantifying se-
mantic similarity between Chinese queries and English
questions in the dual-language vector space is more ro-
bust than the separate query translation followed by
monolingual retrieval.

• CNN (cos+SVM) setting significantly outperform CNN
(only cos) setting on all performance metrics. This
suggests that considering group information of seman-
tically equivalent or different sentence pairs can help
CNN capture richer semantic features of correspond-
ing English and Chinese sentences, which in turn can
improve the performance of question retrieval.

• The Pr@1 and MRR of our CNN (only cos) setting (the
poorer performer in the two CNN settings) are almost
the same as those of Lucene-only baseline. This sug-
gests that our CNN (only cos) can achieve comparable
performance as the traditional IR method in terms of
the rank of the first relevant question. However, the
Pr@5, Pr@10 and MAP of our CNNs (both settings)
are significantly better than the corresponding metrics
of the baseline methods. Our analysis of the retrieval
results suggests that our CNNs can retrieve more rele-
vant questions and rank them higher, especially those
with lexical gaps to the query, which traditional IR
methods often fail to retrieve, as discussed below.

4.3.3 Qualitative Analysis of Retrieval Results
To gain insight into the capability of our CNN and com-

pare results from two methods more objectively, we ran-
domly select 30 queries for which the Lucene only baseline
has a better MAP than our CNN (cos+SVM), and another
30 queries for which our CNN (cos+SVM) has a better MAP.
We manually compare the question retrieval results by our
CNN (cos+SVM) with the Lucene only baseline for each
selected query. Table 2 presents one query in which Lucene-
only baseline returns the better results, and two queries in
which CNN (cos+SVM) is better. Note that all queries are
in Chinese and the English translation is for non-Chinese
readers as references.

Because a group of duplicate questions often has lexically
very similar question titles, Lucene can successfully retrieve
other questions given one of the questions in the group and
also rank these question highly in the results list (as for the
first query in Table 2). In such cases, our approach can
achieve the overall comparable performance as the Lucene

method. However, for questions that have lexical gap to
the queries, it is often hard for Lucene to determine the
query-question similarity. As a result, the performance of
Lucene degrades because such questions cannot be ranked
highly due to few words in common with the query. In con-
trast, our CNN can capture semantic similarity in the face of
lexical gap between queries and questions. Therefore, it of-
ten outperforms the Lucene baseline for duplicate-question
groups with several questions with lexical gaps.

Take the second query in Table 2 as an example, the top-3
results by the Lucene-only baseline cover most words in the
query. However, the semantics of these questions are totally
different to the query. In contrast, our CNN can capture the
semantic similarity between the query and the questions in
the knowledge base, hence even if the relevant questions are
lexically very different from the query, our CNN can still
successfully retrieve them and rank them high in the list,
such as the first two questions retrieved by our CNN for the
second query. Similarly, the Lucene baseline retrieves three
lexically very similar but semantically different questions for
the third query. Note that it fails to capture the semantics
of the words “Python” and “MySQL”. In contrast, the top-
3 questions our CNN returns are all relevant to “Python”
and“MySQL”, even though these questions are lexically very
different from the query.

Although this analysis is anecdotal, our empirical obser-
vations reflect the design intuition of our deep learning sys-
tem, and echo the application results of word embeddings
and CNN in other IR and NLP tasks [6, 10, 14].

4.4 Domain Adaptation of Our CNN
Dataset: We crawl the official Python tutorial at http:

//python.usyiyi.cn. This website provides both the English
version of the tutorial and the Chinese version. Each English
sentence has a corresponding Chinese sentence translated by
human. Given this bilingual parallel corpus, we consider a
pair of corresponding English-Chinese sentences as the se-
mantically equivalent pairs, which means sim = 1 in our
setting. Besides, we randomly select the same number of
English-Chinese sentence pairs that do not have correspon-
dences as semantically different sentence pairs, which means
that sim = 0 for these pairs.

Results: Given a pair of Chinese and English sentences
collected from the website, we use the English and Chinese
CNN channel trained using the Stack Overflow text to map
the sentences onto a dual-language vector space. If the co-
sine similarity of the two sentences in the vector space is
above 0.5, we consider the two sentences as semantically
equivalent, otherwise, as semantically different. We com-
pare the prediction results by our CNN with the ground
truth label of the two sentences. The accuracy of the cor-
rect prediction by our CNN is 83%, which is acceptable but
moderately lower than the prediction accuracy for the Stack
Overflow test data (which is 92%). This experiment suggests
that Stack Overflow text has a good coverage of software en-
gineering knowledge such that word embeddings and CNN
trained using Stack Overflow text can be extended to rec-
ognize and quantify semantics of software engineering text
from a very different data source. However, the performance
may degrade due to certain unseen terms and/or semantics
across different data source. For optimal performance, our
approach can be extended to incorporate data from different
sources into word embeddings learning and CNN training.
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Table 1: Comparison of cross-lingual question-retrieval performance by different methods

Type of Method Query Language Pr@1 Pr@5 Pr@10 MAP MRR

Lucene only English 0.429 0.361 0.319 0.103 0.549

GoogleTranslate+Lucene Chinese 0.386 0.313 0.273 0.095 0.503

CNN (only cos) Chinese 0.430 0.419 0.407 0.266 0.549

CNN (cos+SVM) Chinese 0.504 0.483 0.468 0.289 0.617

Table 2: Retrieval using GoogleTranslate (GT)+Lucene and CNN (cos+SVM) (Italic font for relevant results)

Query 对ArrayList的对象属性排序
(Sort ArrayList of custom Objects by property?)

用Python在终端打印出有颜色的文字?
(Print in terminal with colors using Python?)

在Python中如何连接mysql数据库
(How do I connect to a MySQL Database in Python?)

GT+
Lucene

1.Sorting ArrayList of Objects by Object attribute
2.ArrayList sorting on the basis of object property
3.Sorting an object ArrayList by an attribute value in
Java

1.color text in terminal aplications in unix
2.Print text from the terminal on a label?
3.C++ change terminal text output color

1.How do I connect to an Oracle Database in R?
2.How do I connect to an SQLite database with PHP?
3.How to connect to a localhost MySQL database

CNN
(cos+SVM)

1.Sorting ArrayList of Objects by Object attribute
2.ArrayList object sorting confusion
3.Sort ArrayList by its properties

1.change color of individual print line in Python3.2?
2.is it possible to add colors to python output?
3.Printing an upside down triangle in Python
3.4.2?

1.Python 3.4.0 with MySQL database
2.Python logging to mysql
3.Is it possible to hook up a MySQL database with python

5. RELATED WORK
In this section, we introduce studies of information re-

trieval (IR) especially cross-lingual retrieval in Software En-
gineering. Then, we describe the application of deep learning
in Software Engineering.

5.1 IR in Software Engineering
Information retrieval is an important task in Software

Engineering and it has been mainly studied from two as-
pects, code search and documentation search. Many code
search engines have been proposed based on program pat-
terns [23], test cases [18], program semantics [27], and user
feedback [39]. For software documentation, Siddharth et
al. [35] build a plugin to find API documentation for APIs
mentioned in Q&A discussions. Robillard and Chhetri [29]
can recommend fragments of API documentation potentially
important to a programmer using an API. Information re-
trieval has also been used in bug localization [31], traceabil-
ity recovery [4], and feature location [9, 38].

With the advent of Web 2.0, Q&A websites have become
an important information source for developers. Hence,
much work has been carried out on Q&A data, such as
ranking answers based on user feedback [8] and automati-
cally answering interrogative questions [47] (e.g.,how to and
why questions). Compared with these works, we focus on
bilingual information retrieval in Q&A site which is more
challenging than monolingual analysis.

Some work has been done on cross-lingual issues in Soft-
ware Engineering, such as bug localization between Chinese
and English [41], traceability recovery between Italian and
English [12]. Xu et al. [42] propose a domain-specific bilin-
gual question retrieval system which customizes the gen-
eral translation by finding software-specific terms in a do-
main specific corpus to enhance the translation performance.
These existing methods is rule-based, relying on human-
crafted features and general machine translation system.

In contrast, given a Chinese query, our goal is to retrieve
relevant English questions in which no query or question
translation is required. We adopt deep learning to automat-
ically learn latent word and sentence features, without the
need for human-engineered heuristics or rules. Inspired by
the recent work by Bogdanova et al [3], we use CNNs to
learn to quantify semantic similarity across lingual barrier
and lexical gap from large amounts of duplicated questions
and their corresponding Chinese translations. As a result,
our approach for quantifying semantic similarity of bilingual
documents is more robust, scalable and extensible than tra-
ditional translation-based IR systems, even in the face of
semantic deviations and lexical gap between documents.

5.2 Deep Learning in Software Engineering
Recently, deep learning has made a breakthrough in many

areas such as computer vision [16], speech recognition [13]
and natural language processing [33, 43, 45]. In software en-
gineering, some work also employs deep learning in software-
specific tasks. Chen et al [5] incorporate word embeddings
and categorical and relational knowledge to find analogical
libraries across different programming languages. White et
al [40] use recurrent neural networks to achieve a higher
accuracy in code sequence auto-completion than the tradi-
tional n-gram model. Mou et al [21, 22] propose a tree-based
CNN to learn the structure of the program which is useful for
program analysis such as classifying programs and detecting
code patterns. Reed and Freitas [25] adopt a recurrent and
compositional neural network to learn to predict outputs of
simple programs without executing the programs.

Our approach is motivated by the success of the deep
learning methods in software engineering and natural lan-
guage processing. In this work, we design deep learning tech-
niques to tackle a challenging research problem, i.e, domain
specific cross-lingual question retrieval, which could narrow
the gap between millions of non-English speaking developers
and the tremendous English content in Stack Overflow.

6. CONCLUSION AND FUTURE WORK
In the paper, several techniques including word embed-

dings, CNN, sampling SVM are innovatively incorporated
together to build a deep learning system that bridges the
language gap by directly quantify query-questions semantic
similarity across languages. The system transfers the cross-
lingual question retrieval problem into a k-nearest neighbors
search problem in a dual-language vector space in which no
query or question translation is required. Our experiments
show that our system is especially effective to recognize and
quantify query-questions semantic similarity across seman-
tic deviations and lexical gaps, which is the major barrier for
traditional translation-based and word-overlapping based re-
trieval method. This is because the underlying word embed-
dings and CNN models can better represent query and ques-
tions at semantic level (even across lingual barrier), rather
than relying on the lexical similarity of word overlaps.

We are implementing our system as an online service which
could benefit millions of Chinese developers who want to
reuse English knowledge in Stack Overflow. The design of
our system is general and can be extended to any other lan-
guages. It would be interesting to see whether our approach
can effectively support multi-lingual question retrieval.
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